Automatic Three-Dimensional Defocused Particle Tracking

John Roberts

May 19, 2006

Introduction:

The purpose of this project is the creation of software that will allow for the automatic analysis of data obtained using our recently developed 3D-DPTV. Our method is designed for use in a research setting, and as such the software being developed has researchers as its intended audience. Due to the most probable applications of the particle tracking method, it must be assumed that these users will have a wide variety of backgrounds, from engineering to biology. Development of the software has occurred over several stages, beginning in the summer of 2004 and finally reaching something akin to its current form in the fall of 2005. As it is to be used by researchers for a variety of tasks, many of which we have likely not imagined, the software must be made to be clear and transparent so that it may be easily understood, while remaining easily modifiable should others wish to augment its capabilities for specialized tasks. These concerns will be addressed in the following sections, after which a guide to using the code, as well as the heavily commented code itself, will be presented.

Problem Statement and Objectives:

The goal of this project is the creation of a robust code for the automatic tracking of defocused particles using our 3D-DPTV method. This code must be able to track a sufficient number of particles to produce useful statistics from obtained data, it must be robust enough to give confidence that the data it produces is reliable, and it must be sufficiently well documented that it is understandable and modifiable by third-parties without significant interaction with the original designers of the code. The criterion for considering the first two goals met is the code's ability to provide our own research with the necessary amount of data with the required accuracy. As our research places relatively high demands on the performance of our system, if we can achieve the goals of our own study we believe we will be capable of performing well in many other projects. For the third goal the criterion for success is making the code sufficiently transparent that the members of our lab are capable not just of using the code, but of maintaining and adding to it.

Design Process:

Due to the complexity of the task and the lack of existing models on which to base a design, the development of the tracking software was difficult, time consuming and took many iterations to produce a working system. The technical challenge was locating a relatively large-scale ring structure of a fairly complicated geometry (rather than the simple "blob" of many particle locating techniques). Many possible methods were considered, each based upon identifying some combination of the following two characteristics of the bright rings: intensity and uniformity. Intensity relates to the fact that the rings were generally brighter than the background and thus could be in some sense identified by their brightness. Uniformity relates to the fact that around a ring things are similarly intense, while non-ring structures will often have several peaks around any given center for any reasonably large radius (exceeding 6 pixels or so in our work). While several failed attempts were tried using assorted schemes to identify these characteristics (many involving examining one pixel at a time and building of a tally representing some measure of "ringness"), after repeated iterations two successful processes were found. The first was performing an azimuthal average about a guessed center and observing the intensity profile versus distance from the center. Using a guessed radius the peak of the profile could be found, with this peak suspected of being the radius of the ring. This averaging is performed several times around the guessed center, and the center with the "sharpest" peak (found by fitting to a quadratic function to the peak and determining the second derivative) is chosen as the correct one. A second method produced ring-shaped "masks" of assorted radii and moved them around the image, ordering all the pixels covered by the mask and multiplying two pixel's intensity values together. The pixels chosen were generally relatively low-valued pixels (ie the 50th and 75 percentile) and therefore the ring had to be uniformly bright to produce a high result. Both of these methods were found to be reasonably successful, and more importantly, both used subtly different metrics for identifying a ring. As such, both of these could be used in the some code to improve the robustness of the automatic tracker, ensuring that every ring found passed both criterion. While trackers using just one or the other were created, it was found that by unifying them better performance could be achieved. From the combination of these two ring-finding methods, the final version of the tracker was born.

Operator Interaction:

The code is written in Matlab, and as such it is all very accessible due to the fact that it is interpreted rather than complied. Modifications are easy to implement and the methods used are very visible. However, due to the complexity of the code itself the process can be quite daunting, and as such extensive comments are used to explain what the code is doing at every step. In addition, a simple users manual is included to give the operator a quick understanding of what is occurring and how the code may be executed quickly without spending the time to fully understand the minutiae of the program. Through the combination of these two resources, it is hoped that the code will be usable, understandable and extendable for future researchers to utilize the code both for its original purpose and other purposes as yet unimagined.

Quick User's Guide

Introduction:

The purpose of this automatic tracking software is to convert .tif stacks obtained using our recently developed 3D-DPTV technique into trajectories of particles in three-dimensions. To accomplish this there are three Matlab scripts that, when run in order, will turn a specified stack of .tif images into a Matlab structure containing the found trajectories, each trajectory’s three dimensional positions, and the frames in which the particles were found. The guide is designed to allow a person to use this Matlab software as quickly and easily as possible, while still covering all the necessary components of the code such as modifiable parameters and thresholds.

Basic Steps:

The simplest way to use the program requires to user to have only minimal interaction with the code itself. Indeed, the code need only be manipulated in one place, and this consists simply of entering the path to the desired .tif stack. This process, omitting discussion of all important variable parameters, is given below:

1. Open auto3Dtrack.m and find the comment "Enter .tif path here:" near the top.

2. Enter the desired .tif stack's path into the first filename position, and ensure that the variable stackNum is set to 1.

3. Enter the name under which the tracked data should be saved for this run at the end of the code at the “Enter save name here:” comment.

4. Set p_scale and r_scale in frameLinker based upon calibration data.

5. Save the file, and ensure that the active work directory of Matlab is set to the directory containing the 3D tracking code.

6. Type auto3Dtrack.m in the command window, and run. Wait for this process to complete (it may be very time consuming).

7. Type frameLinker in the command window, this will produce a structure tk. A plot will be produced containing the linked trajectories, although these trajectories are not in their final form.

8. Type linkTracks in the command window, this will produce a structure tk2, which will hold the final linked trajectories, and may form the basis of any future data manipulations. A plot will also be produced showing the found trajectories.

This is all that is required to run the 3D tracking code, however its performance will not in general be optimal. To improve the number of tracks found and the robustness of the data, it is important to set the assorted parameters of the code to values that work well with the particle data being analyzed. A discussion of these parameters and their effects is covered below.

Important Parameters:

This is a short listing of some of the most important parameters in the tracking software. It contains descriptions of parameters that likely need to be adjusted when a new set of data is processed. These parameters are listed based upon the file in which they appear:
auto3d_track:

· stackNum: this parameter determines the number of different .tif stacks that will be tracked in this run of the tracking software. Make sure to set each stacks file name and save name as well before running. NOT SETTING SAVE NAME CAN RESULT IN PREVIOUSLY TRACKED DATA BEING LOST.
· Nt: this parameter determines the number of frames that will be tracked. The tracker will track the first through the Nt-th frame of the .tif stack.

· threshold: this determines how strict the first ring-mask filter will be. Specific values to use depend a great deal on the data being observed, but in general a higher number will produce fewer found rings, but the rings it finds will be more likely real.

· proximity_threshold: this determines the minimum number of pixels two rings have to be apart to be considered different rings, rather than simply one ring found twice. Two similar rings with similar radii found to be less than this number apart will be averaged together into one ring.

· Nr_min: this is the minimum radius ring for which masks are made, and thus the smallest rings findable by the first filter.

· Nr_max: this is the largest ring radius considered by the moving mask filter

· maxSearchDisplacement: this determines how far from the guessed center the azimuthal averaging filter will go when searching for the true center.

frameLinker:

· p_scale: this is the number of actual distance units a pixel represents. It is important to set this to the appropriate value based upon calibration

· r_scale: this is similar to the above value, but correlates radius and the z-dimension.

· min_l: this is the minimum length track that will be displayed when the linking occurs

· dmax: this is the maximum distance between two particles in subsequent frames that is allowed while still considering them to be from the same track.

linkTracks:

· dis_threshold: tracks that are close enough in time and within this distance of one another will be considered reasonable to link

· max_dt: this is the maximum number of frames between the end of one track and the start of another that will still allow for the two tracks to be linked.

multiSearch:

· showResult: if this is set to 1 every frame will be displayed along with the found centers and rings for that frame.

createProfile_advanced:

· searchRadius: this is the maximum radius the azimuthal averaging tracker will use. It should be set similar to but larger than Nr_max.

centerSearch:

· profileExaminationWidth: this determines how large a region of the profile surrounding the guessed radius will be examined when looking for the maximum.

remove_circle:

· r_kill_limit: limit as to how close to the guessed error radius a circle’s radius must be to be considered an error. (this is a rather technical point, and should only be changed by those familiar with the code)

